Coptuposku. Komnaparopsi

Denis Bakin



CoptupoBka — HanomMunHaHve

® std::sort copTupyeT 3semMeHTbl BEKTOPa B MOPsAJKe BO3pacTaHns
® std::set XpaHUT 3neMeHTbl B NOPsAJKe BO3PACTAHUSA 3HAYEHUNA
® std::map XpaHWUT napbl B NOPsiAKE BO3PACTaHUA KItOHei



CoptupoBka — HanomMunHaHve

® std::sort copTupyeT 3semMeHTbl BEKTOPa B MOPsAJKe BO3pacTaHns
® std::set XpaHUT 3neMeHTbl B NOPsAJKe BO3PACTAHUSA 3HAYEHUNA
® std::map XpaHWUT napbl B NOPsiAKE BO3PACTaHUA KItOHei

A KaK N3MEHUTb MOPSILOK COPTUPOBKN?



® Komnapatop — pyHKUNS uin PyHKTOP AN CPAaBHEHNS 4BYX OOBEKTOB
® BosBepalyaer true, eciv nepsblii apryMeHT JOJKEH UATY PaHbLUe BTOPOro
® licnonb3syetcs B std: :sort, std: :set, std: :map u ap.



®opmannszauyusa ynopsagov4eHHOCTU

Habop anemenToB @1, ..., @, C4UTaeM ynopsao4eHHbIM Mo (yHkuun f, ecnu:

V1§i<j§n:f(aivaj):1

® (CpaBHeHune obbeEKTA, KOTOPLIA UAET paHblue, C OOBEKTOM, KOTOPbIV UAET MO3XKE, AOJHXKHO ObITh UCTUHHBIM
® CopTupoBKa — 3TO MEPeCcTaHOBKA 3JIEMEHTOB Tak, YTODbI BbINOJHSANOCH 3TO YC/NOBME



Mpocreiilume komnapaTtopsbl

template<typename T>
bool customlLess(const T& a, const T& b) {

return a < b;

template<typename T>
bool customGreater(const T& a, const T& b) {
return a > b;

® customlLess — COPTMPOBKA NO BO3PACTAHUIO
® customGreater — copTMpPOBKa MO ybbIBaHUIO



KomnapaTopbl AN CJI0XKHbIX TUNOB

bool firstCoordOnlyLess(const std::pair<int, int>& a,
const std::pair<int, int>& b) {
return a.first < b.first;

bool distanceToOriginLess(const std::pair<int, int>& a,
const std::pair<int, int>& b) {
return a.first * a.first + a.second * a.second
< b.first * b.first + b.second * b.second;

® (CpaBHeHMe TOJIbKO MO NEepBOi KoopAMHaTe
® (CpaBHeHMe MO PacCTOSIHUIO O Havana KoopauHaT



Mpumep: copTmnpoBka koopauHat

#include <iostream>
#include <vector>
#include <algorithm>

int main() {
std::vector<std::pair<int, int>> coords = {
{3, 7}, {8, 1}, {14, 6}, {9, 3}, {11, 15},
{11, 12}, {3, 10}, {14, 4}, {17, 8}, {8, 5},
};

std: :sort(coords.begin(), coords.end(), firstCoordOnlyLess);
/7 (3, 7T, (3, 10), (8, 1), (8, 5), (9, 3),



Wcnonb3oBaHue std::sort c komnapatopom

std: :sort(coords.begin(), coords.end(), firstCoordOnlyLess);
std::cout << "Sorted by first coord: \n";
printCoords (coords) ;

std: :sort(coords.begin(), coords.end(),

std::less<std::pair<int, int>>());
std::cout << "Sorted by built-in less: \n";
printCoords (coords) ;

std: :sort(coords.begin(), coords.end(), distanceToOriginLess);
std::cout << "Sorted by distance to origin: \n";

printCoords (coords) ;



Pe3ynbTathl copTypoBku

Sorted by first coord:
@3, 7, @, 10, (B, 1), @8, 5, (9, 3), (11, 15),

Sorted by built-in less:
@3, 7, 3,10, (6, 1), (8, 5), (9, 3), (11, 12),

Sorted by distance to origin:
@3, n, 6, 1, (B, 5, (9, 3), (3, 10), (14, 4),

® PasHble KOMMapaTopbl — Pa3Hblii NOPSLOK



Nambaa-dpyHkumm

® Jlambpa — aHOHUMHAs (PYHKLMSI, ONpeAensieMasi Ha MecTe
® Cunrtakcnc: [3axsart] (mapametTps) { Temo }
® VnobHo Ansi KOMMNapaTopos

auto cmp = [](const int& a, const int& b) {
return a > b; // no y6usanmo
s

std::sort(vec.begin(), vec.end(), cmp);

10



Nambpa-komnaparopsi inline

std::vector<int> numbers = {5, 2, 8, 1, 9};

// CopTupoBKa IO y6HBaHMO C JIAMOIOH
std: :sort (numbers.begin(), numbers.end(),
[J(const int& a, const int& b) {
return a > b;

g
// 9, 8,5, 2,1

® Jlambaa nepefaercs npsiMo B BbI30B (DYHKLMM

11



CrpykTtypa Person

struct Person {

std::string name;

int age;

double height; // pocT B MeTpax
g

® Kak OTCOpTMPOBaThL BEKTOP JtOfel MO pa3HbiM Nosim?

12



Komnapatop kak ctpykTtypa (cyHkTop)

struct CompareHeightStruct {
bool operator() (const Person& a, const Person& b) const {
return a.height < b.height;

}s

® CTpykTypa C neperpy>xeHHbim operator ()
® MOoXXHO NCMOAb30BaTb Kak KOMNapaTop

13



std::set ¢ komnapaTopom

® std::set<T, Compare> — BTOPOii LWabAOHHbI NapamMeTp 3afaéT KomnapaTop
® [lo ymonyaHuto Compare = std::less<T>
std::set<int, std::greater<int>> descendingSet;
descendingSet.insert(3);
descendingSet.insert(1);
descendingSet.insert(2);
// Topsmor: 3, 2, 1

14



std::set ¢ nambaa-komnapaTopom

auto cmp_name = [](const Person& a, const Person& b) {
return std::tie(a.name, a.age, a.height)
< std::tie(b.name, b.age, b.height);
I8

std: :set<Person, decltype(cmp_name)> peopleByName = {
{"Alice", 30, 1.65},
{"Bob", 25, 1.80},
{"Charlie", 35, 1.75%}
Irg
® decltype(cmp_name) — Tun nsmbabl

® std::tie co3maéT KOpTex CChbINOK ANS NeKcukorpadryeckoro CpaBHeHNs!
® MHoxecTBO XpaHuUT sitogeli B nopsigke umér (c tie-breaker no sospacty n pocry)

15



std::set: copTupoBka no Bo3pacrty

auto cmp_age = [](const Person& a, const Person& b) {
return std::tie(a.age, a.name, a.height)
< std::tie(b.age, b.name, b.height);
;

std: :set<Person, decltype(cmp_age)> peopleByAge = {
{"Alice", 30, 1.65},
{"Bob", 25, 1.80%},
{"Charlie", 35, 1.75}

Irg

// Bob (25), Alice (30), Charlie (35)

16



std::set: copTupoBka no pocrty

auto cmp_height = [](const Person& a, const Person& b) {
return std::tie(a.height, a.name, a.age)
< std::tie(b.height, b.name, b.age);
I8

std: :set<Person, decltype(cmp_height)> peopleByHeight = {
{"Alice", 30, 1.65},
{"Bob", 25, 1.80%},
{"Charlie", 35, 1.75}

15

// Alice (1.65m), Charlie (1.75m), Bob (1.80m)

17



std::map c komnapaTopom

® std::map<Key, Value, Compare> — TpeTuii napamMeTp 3aaéT KOMMNapaTop KJto4el

® PaboraeT aHanornyHo std: :set

auto cmp = [](const std::string& a, const std::string& b) {
if (a.length() != b.length()) {
return a.length() < b.length(); // cmavama mo nnuHe
}
return a < b; // 3aTeM neKcmKOTpaduIeCKH

8

std::map<std::string, int, decltype(cmp)> wordCount;
wordCount["a"] = 1;

wordCount ["hello"] = 2;

wordCount ["hi"] = 3;

// Kmoum: "a", "hi", "hello"

18



MonHbii Nnpumep c BbIBOAOM

template<typename T>
void printPersons(const T& people) {
for (const auto& person : people) {
std::cout << person.name << "\t ("
<< person.age << ", "
<< person.height << "m)" << '\n';

19



BbiBog, oTCOPTMPOBAHHBLIX MHOXXECTB

People sorted by name:
Alice (30, 1.65m)
Bob (25, 1.8m)
Charlie (35, 1.75m)

People sorted by age:
Bob (25, 1.8m)

Alice (30, 1.65m)
Charlie (35, 1.75m)

People sorted by height:
Alice (30, 1.65m)
Charlie (35, 1.75m)
Bob (25, 1.8m)

20



Cno>xxHble cOpTUPOBKMU

Mo>kHo co3paBaTh KoMMnapaTopbl AJist:

® |I3MeHeHns npropuTeTa MoJsieil: CHavana no TPeTbeMY, MNOTOM MO NEPBOMY
® [lepBoe nosie no Bo3pacTaHuio, BTOPoe — No ybbiBaHMIO
® CopTupoBKa No METpPUKe: CpeaHee, MeAMaHa, paccTosiHme

21



Mpumep: copTmnpoBka no ABym nonsim

auto cmp = [](const Person& a, const Person& b) {
if (a.age != b.age) {
return a.age < b.age; // cmavama mo BO3pacTy
}
return a.name < b.name; // 3aTeM IO HUMEHU

};

// Wnu c ucnonb3osanueM std::tie:
auto cmp_tie = [](const Person& a, const Person& b) {
return std::tie(a.age, a.name) < std::tie(b.age, b.name);

}s

® [Ipu paBeHCTBE NepPBOro KpPUTEPUSI UCMOJIb3YETCS BTOPOI
® std::tie genaer Kog KOPOYeE M MeHee MOABEPXKEHHbLIM OLIMbKamM

22



TpeboBaHus Kk komnapartopy

KomnapaTop gonkeH 3agaBaTb CTPOrunii cnabblii Nopsafok:

1. AntupednekcusHocts: f(a,a) = false
2. Acummetpuunocte: ecu f(a,b) = true, To f(b,a) = false
3. TpausutusHocts: ecnu f(a,b) n f(b,c), 1o f(a,c)

Hapyuenue stux npasun segét k UB!

23



Owwubka: HecTpormii komnapartop

// HEINPABUJIBHO!
auto bad_cmp = [](const int& a, const int& b) {
return a <= b; // <= BMecTO <

I8

// TIPABUIIBHO
auto good_cmp = [](const int& a, const int& b) {
return a < b;

8

® |Icnonb3yiite <, a He <=
® |lcnonb3yiite >, a He >=

24



Ntorn

KomnapaTop — tbyHKLMS CpaBHEHNS 4151 ONpeaeneHns nopsiaka

CopTrpoBKka nepecTaBfsieT 3AeMeHTbl TaK, H4Tobbl BCE Napbl YA0BAETBOPSAN KOMMNApaTopy
Nambpa-pyHkuun ynobHbl Ans co3aaHns KOMNapaTOpPoOB Ha MecTe

std::set n std: :map NpUHUMAlOT KOMNApaTop Kak LAbAOHHbIV napaMeTp
WNcnonb3yiite decltype asns ykasaHus Tuna asimoab

KomnapaTop gosxeH 3afaBaTb CTporuii cnabbiii nopsiiok

[Ons std: :set/std: :map ncnonb3yiite tie-breaker'sl (std: :tie), 4TobbI pasnnyHbIe SNEMEHTbI HE CHUTANNCD

PaBHbIMU

25



