
Сортировки. Компараторы

Denis Bakin

1



Сортировка – напоминание

• std::sort сортирует элементы вектора в порядке возрастания
• std::set хранит элементы в порядке возрастания значений
• std::map хранит пары в порядке возрастания ключей

А как изменить порядок сортировки?

2



Сортировка – напоминание

• std::sort сортирует элементы вектора в порядке возрастания
• std::set хранит элементы в порядке возрастания значений
• std::map хранит пары в порядке возрастания ключей

А как изменить порядок сортировки?

2



Компараторы

• Компаратор – функция или функтор для сравнения двух объектов
• Возвращает true, если первый аргумент должен идти раньше второго
• Используется в std::sort, std::set, std::map и др.

3



Формализация упорядоченности

Набор элементов 𝑎1, … , 𝑎𝑛 считаем упорядоченным по функции 𝑓 , если:

∀ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 ∶ 𝑓(𝑎𝑖, 𝑎𝑗) = 1

• Сравнение объекта, который идет раньше, с объектом, который идет позже, должно быть истинным
• Сортировка – это перестановка элементов так, чтобы выполнялось это условие

4



Простейшие компараторы

template<typename T>
bool customLess(const T& a, const T& b) {

return a < b;
}

template<typename T>
bool customGreater(const T& a, const T& b) {

return a > b;
}

• customLess – сортировка по возрастанию
• customGreater – сортировка по убыванию

5



Компараторы для сложных типов

bool firstCoordOnlyLess(const std::pair<int, int>& a,
const std::pair<int, int>& b) {

return a.first < b.first;
}

bool distanceToOriginLess(const std::pair<int, int>& a,
const std::pair<int, int>& b) {

return a.first * a.first + a.second * a.second
< b.first * b.first + b.second * b.second;

}

• Сравнение только по первой координате
• Сравнение по расстоянию до начала координат

6



Пример: сортировка координат

#include <iostream>
#include <vector>
#include <algorithm>

int main() {
std::vector<std::pair<int, int>> coords = {

{3, 7}, {8, 1}, {14, 6}, {9, 3}, {11, 15},
{11, 12}, {3, 10}, {14, 4}, {17, 8}, {8, 5},

};

std::sort(coords.begin(), coords.end(), firstCoordOnlyLess);
// (3, 7), (3, 10), (8, 1), (8, 5), (9, 3), ...

}

7



Использование std::sort с компаратором

std::sort(coords.begin(), coords.end(), firstCoordOnlyLess);
std::cout << "Sorted by first coord: \n";
printCoords(coords);

std::sort(coords.begin(), coords.end(),
std::less<std::pair<int, int>>());

std::cout << "Sorted by built-in less: \n";
printCoords(coords);

std::sort(coords.begin(), coords.end(), distanceToOriginLess);
std::cout << "Sorted by distance to origin: \n";
printCoords(coords);

8



Результаты сортировки

Sorted by first coord:
(3, 7), (3, 10), (8, 1), (8, 5), (9, 3), (11, 15), ...

Sorted by built-in less:
(3, 7), (3, 10), (8, 1), (8, 5), (9, 3), (11, 12), ...

Sorted by distance to origin:
(3, 7), (8, 1), (8, 5), (9, 3), (3, 10), (14, 4), ...

• Разные компараторы – разный порядок!

9



Лямбда-функции

• Лямбда – анонимная функция, определяемая на месте
• Синтаксис: [захват](параметры) { тело }
• Удобно для компараторов

auto cmp = [](const int& a, const int& b) {
return a > b; // по убыванию

};
std::sort(vec.begin(), vec.end(), cmp);

10



Лямбда-компараторы inline

std::vector<int> numbers = {5, 2, 8, 1, 9};

// Сортировка по убыванию с лямбдой
std::sort(numbers.begin(), numbers.end(),

[](const int& a, const int& b) {
return a > b;

}
);
// 9, 8, 5, 2, 1

• Лямбда передается прямо в вызов функции

11



Структура Person

struct Person {
std::string name;
int age;
double height; // рост в метрах

};

• Как отсортировать вектор людей по разным полям?

12



Компаратор как структура (функтор)

struct CompareHeightStruct {
bool operator()(const Person& a, const Person& b) const {

return a.height < b.height;
}

};

• Структура с перегруженным operator()
• Можно использовать как компаратор

13



std::set с компаратором

• std::set<T, Compare> – второй шаблонный параметр задаёт компаратор
• По умолчанию Compare = std::less<T>

std::set<int, std::greater<int>> descendingSet;
descendingSet.insert(3);
descendingSet.insert(1);
descendingSet.insert(2);
// Порядок: 3, 2, 1

14



std::set с лямбда-компаратором

auto cmp_name = [](const Person& a, const Person& b) {
return std::tie(a.name, a.age, a.height)

< std::tie(b.name, b.age, b.height);
};

std::set<Person, decltype(cmp_name)> peopleByName = {
{"Alice", 30, 1.65},
{"Bob", 25, 1.80},
{"Charlie", 35, 1.75}

};

• decltype(cmp_name) – тип лямбды
• std::tie создаёт кортеж ссылок для лексикографического сравнения
• Множество хранит людей в порядке имён (с tie-breaker по возрасту и росту)

15



std::set: сортировка по возрасту

auto cmp_age = [](const Person& a, const Person& b) {
return std::tie(a.age, a.name, a.height)

< std::tie(b.age, b.name, b.height);
};

std::set<Person, decltype(cmp_age)> peopleByAge = {
{"Alice", 30, 1.65},
{"Bob", 25, 1.80},
{"Charlie", 35, 1.75}

};
// Bob (25), Alice (30), Charlie (35)

16



std::set: сортировка по росту

auto cmp_height = [](const Person& a, const Person& b) {
return std::tie(a.height, a.name, a.age)

< std::tie(b.height, b.name, b.age);
};

std::set<Person, decltype(cmp_height)> peopleByHeight = {
{"Alice", 30, 1.65},
{"Bob", 25, 1.80},
{"Charlie", 35, 1.75}

};
// Alice (1.65m), Charlie (1.75m), Bob (1.80m)

17



std::map с компаратором

• std::map<Key, Value, Compare> – третий параметр задаёт компаратор ключей
• Работает аналогично std::set

auto cmp = [](const std::string& a, const std::string& b) {
if (a.length() != b.length()) {

return a.length() < b.length(); // сначала по длине
}
return a < b; // затем лексикографически

};

std::map<std::string, int, decltype(cmp)> wordCount;
wordCount["a"] = 1;
wordCount["hello"] = 2;
wordCount["hi"] = 3;
// Ключи: "a", "hi", "hello"

18



Полный пример с выводом

template<typename T>
void printPersons(const T& people) {

for (const auto& person : people) {
std::cout << person.name << "\t ("

<< person.age << ", "
<< person.height << "m)" << '\n';

}
}

19



Вывод отсортированных множеств

People sorted by name:
Alice (30, 1.65m)
Bob (25, 1.8m)
Charlie (35, 1.75m)

People sorted by age:
Bob (25, 1.8m)
Alice (30, 1.65m)
Charlie (35, 1.75m)

People sorted by height:
Alice (30, 1.65m)
Charlie (35, 1.75m)
Bob (25, 1.8m)

20



Сложные сортировки

Можно создавать компараторы для:

• Изменения приоритета полей: сначала по третьему, потом по первому
• Первое поле по возрастанию, второе – по убыванию
• Сортировка по метрике: среднее, медиана, расстояние

21



Пример: сортировка по двум полям

auto cmp = [](const Person& a, const Person& b) {
if (a.age != b.age) {

return a.age < b.age; // сначала по возрасту
}
return a.name < b.name; // затем по имени

};

// Или с использованием std::tie:
auto cmp_tie = [](const Person& a, const Person& b) {

return std::tie(a.age, a.name) < std::tie(b.age, b.name);
};

• При равенстве первого критерия используется второй
• std::tie делает код короче и менее подверженным ошибкам

22



Требования к компаратору

Компаратор должен задавать строгий слабый порядок:

1. Антирефлексивность: 𝑓(𝑎, 𝑎) = 𝑓𝑎𝑙𝑠𝑒
2. Асимметричность: если 𝑓(𝑎, 𝑏) = 𝑡𝑟𝑢𝑒, то 𝑓(𝑏, 𝑎) = 𝑓𝑎𝑙𝑠𝑒
3. Транзитивность: если 𝑓(𝑎, 𝑏) и 𝑓(𝑏, 𝑐), то 𝑓(𝑎, 𝑐)

Нарушение этих правил ведёт к UB!

23



Ошибка: нестрогий компаратор

// НЕПРАВИЛЬНО!
auto bad_cmp = [](const int& a, const int& b) {

return a <= b; // <= вместо <
};

// ПРАВИЛЬНО
auto good_cmp = [](const int& a, const int& b) {

return a < b;
};

• Используйте <, а не <=
• Используйте >, а не >=

24



Итоги

• Компаратор – функция сравнения для определения порядка
• Сортировка переставляет элементы так, чтобы все пары удовлетворяли компаратору
• Лямбда-функции удобны для создания компараторов на месте
• std::set и std::map принимают компаратор как шаблонный параметр
• Используйте decltype для указания типа лямбды
• Компаратор должен задавать строгий слабый порядок
• Для std::set/std::map используйте tie-breaker’ы (std::tie), чтобы различные элементы не считались
равными

25


